l^2-22l-133=0

Simple and best practice solution for l^2-22l-133=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for l^2-22l-133=0 equation:



l^2-22l-133=0
a = 1; b = -22; c = -133;
Δ = b2-4ac
Δ = -222-4·1·(-133)
Δ = 1016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1016}=\sqrt{4*254}=\sqrt{4}*\sqrt{254}=2\sqrt{254}$
$l_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{254}}{2*1}=\frac{22-2\sqrt{254}}{2} $
$l_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{254}}{2*1}=\frac{22+2\sqrt{254}}{2} $

See similar equations:

| 7(2x+4)-1=-57 | | H=-16t^2-10t+200 | | -12x-94=164-5x | | 28=6g | | 7(6k-4)-3k=4(2k-7) | | -8n=-10n+2n | | 3x+15-9=x(x+2) | | g-(5/4)=3/16 | | 10(3x+x)=68 | | 81/162=3^x | | (3/16)=(-5/4)+g | | 16x^2+28x=4 | | a+(3.75)=6.11 | | –11=3g+4. | | 9p+11.5=94.75 | | 11x+2=12x–7 | | 2x^2=78 | | 3x^2+11×-4=0 | | k+(5/6)=-1/6 | | 35=5x−10 | | x+3=4x-(3x+) | | 150=8x+6(9)= | | 9x+3(x-4)=63 | | -50=-45x^2 | | -2x^2=58 | | 8x-3x=-30 | | -2(u-78)=56 | | -32+10k=48 | | 6r+30=96 | | x/25+5=30 | | 10=5(y-95) | | 4x2-3x-18=x2 |

Equations solver categories